Research

Bioinnovation banner
The Bioinnovation Program was established with the central goal of cultivating a community of leaders who will work to effect transformational changes in healthcare through enhanced technologies, increased availability, reduced cost, and improved patient quality of life. Collaborative interactions across Tulane's scientific, engineering and clinical research communities provide our students with a wealth of resources and diversity of perspectives to enhance their doctoral research projects and incorporated entrepreneurial pursuits. A common focus on biological delivery technologies provides a unifying scientific framework for the cross-fertilization of ideas to optimize scientific progress and accelerate the path to biomedical breakthroughs.

"Biological delivery" refers to the transport of energy, mass and momentum that is an essential design component of biomedical devices that impact living systems. These transport processes are evident from the smallest spatial scale of molecular dimensions to the organ and organism level. This biological delivery scientific theme is a fundamental component of research in the Bioinnovation Program on: (1) regenerative medicine, (2) biosensors for real-world applications and (3) advanced therapeutic materials. Through quantitative analysis, modeling and simulation of biological systems, Bioinnovation fellows work to gain an improved mechanistic understanding of physiologic and pathophysiologic processes and to apply this knowledge to the development of translational biomedical technologies and devices. More information can be found in the Student & Faculty Handbook.

Stem-Cell Technologies for Regenerative Medicine
Biosensors for Real-World Application
Therapeutic Materials

 

Regenerating organs using stem cells and biomaterials from IGERT Resources on Vimeo.